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Abstract

In this paper coupled torsional and vertical oscillations of a beam in a wind-field are studied. Different kinds of dampers

are added to the beam to suppress undesirable oscillations. Using a two times scales perturbation method, the relationship

between the beam parameters and the damping rates are obtained analytically.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades a lot of suspension bridges and cable stay bridges have been constructed. Compared
to the old bridges the new ones are usually longer and are built with fewer pillars and stays. One of the longest
suspension bridges in the world at the moment is the Akashi Kaikyo Bridge in Japan with a span length of
12 828 feet. This relatively high bridge connects the city of Kobe to one of its neighboring islands. It is very
important to investigate the behavior of such suspension bridges in airflow. It is known that a suspension
bridge can undergo dangerous oscillations under strong wind. These oscillations can be vertical and torsional
ones. Moreover, the torsional oscillations are very sensitive to the nonlinear behavior of the cables and the
hangers connecting the roadbed to the main suspension cables. Without special design tricks flutter
instabilities will occur at wind speeds below the required critical wind speed for these span lengths. It is known
that flutter produces motions often in the form of torsional oscillations. It is believed nowadays that flutter
caused the collapse of the Tacoma Narrow Bridge in 1940. Hence it is so important to investigate dynamic
oscillations in suspension bridges, especially the destructive large-amplitude oscillations, and to develop design
techniques to prevent such destructive oscillations.

Simple models for such oscillations are described with second- and fourth-order partial differential
equations. Usually asymptotic methods can be used to construct approximations for the solutions of these
wave, beam or plate equations. For a long time initial-boundary value problems for weakly nonlinear wave
equations have been studied. For example in Ref. [1] a forced nonlinear wave equation on a bounded domain
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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has been considered which (under certain physical assumptions) models the torsional oscillations of the main
deck of a suspension bridge.

The analysis becomes more complicated for beam equations (see for instance Refs. [2–7]). In the last decades
Lazer and McKenna proposed mathematical models describing oscillations in suspension bridges, which are
based upon the observation that the fundamental nonlinearity in suspension bridges is that the stays
connecting the supporting cables and the roadbed resist expansion but do not resist compression. These
models are described by systems of coupled nonlinear partial differential equations. The vertical and torsional
motions are coupled through nonlinear terms. These nonlinearities arise from the loss of tension in the vertical
cables supporting the deck. The impact of wind forces on the stability of motion in this system is considered
for cases with and without viscous and structural damping. However, the case of coupled vertical and
torsional oscillations is not completely studied and understood. Multiple large-amplitude periodic oscillations
have been found theoretically and numerically in the single Lazer–McKenna suspension bridge equation (see
Refs. [2,3,8–12]). Recently for the Lazer–McKenna suspension bridge system governed by coupled nonlinear
beam and wave equations multiple periodic oscillations have been found [13,14].

In most of the papers as mentioned before the authors used numerical approaches to study and to describe
the vertical or/and torsional oscillations, and also assumptions have been introduced to decouple the system of
nonlinear differential equations. In this paper a model describing both torsional and vertical oscillations of
suspension bridges will be presented. An engineering approach will be used, that is, different dampers will be
added to the suspension bridge to diminish undesirable oscillations. The system will be linearized around the
most critical regimes where the oscillations can occur. The analysis of the linearized problems will be presented
in this paper.

The outline of this paper is as follows. In Section 2 the derivation of the model will be given. In Section 3
several kinds of damping mechanisms are introduced and their influence on the vertical oscillations of the
system are studied. Three types of damping mechanisms to diminish the coupled torsional and vertical
oscillations of the system are considered and studied in Section 4. Finally some conclusions will be drawn in
Section 5.

2. Mathematical model of coupled torsional and vertical oscillations of a beam in a wind field

In this section a simple model describing both vertical and torsional oscillations of suspension bridges will
be derived. To derive the equations of motion for an elastic beam part of the analysis as given in Refs. [7,15]
will be followed. An elastic beam of length l will be considered. The x-axis is taken along the beam axis, such
that the left end of the beam corresponds with x ¼ 0. The z-axis is taken vertically. It is assumed that the beam
can rotate around the x-axis. Using Kirchhoff’s approach the horizontal movement in x-direction can be
eliminated. It is known that the galloping oscillations (which are considered in this section) produce almost
purely vertical motion of an elastic structure in a wind-field. So it is assumed that the movement of the beam in
the y-direction can be neglected, and only vertical (that is, in the z-direction) and torsional oscillations of the
beam around the x-axis are considered.

Coupled flexural and torsional vibrations will occur for this beam due to wind forces. We will consider low
frequencies and a large amplitude phenomenon involving vertical and torsional oscillations of a beam on
which for instance ice has been accumulated. The frequencies involved are so low that the assumption can be
made that the aerodynamic forces are as in steady flow. Another consequence of these low frequencies is that
structural damping may be neglected. To model such vibrations a (weakly) nonsymmetrical cross-section
perpendicular to the x-axis of the beam (for example with an ice ridge) will be considered. It is assumed that
every cross-section perpendicular to the x-axis oscillates in the ðy; zÞ-plane (see Fig. 1). Along the axis of
symmetry of a cross-section a vector es is defined to be directing away from the ice ridge and starting in the
center of the cross-section. On each coordinate axis a unit vector is fixed: on the x-axis the vector ex, on the y-
axis the vector ey and on the z-axis the vector ez, which has a direction opposite to gravity. Let the static angle
of attack as (assumed to be constant and identical for all cross-sections) to be the angle between es and the
uniform airflow v1, with j as jpp. In this uniform airflow with flow velocity v1 ¼ v1ey ðv140Þ the beam
may oscillate due to the lift force LeL, the drag force DeD, and the moment MeM . It should be noted that the
drag force DeD has the direction of the virtual wind velocity Dvs � v1 � ðqw=qtÞez, and the lift force LeL has
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Fig. 1. Cross-section at x ¼ x0 of the circular beam with ice ridge in the ðy; zÞ-plane.
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a direction perpendicular to the virtual windvelocity vs. In Fig. 1 the forces LeL and DeD acting on the
cross-section are given. The equations describing the vertical and the torsional motions of the beam are
given by

rAwtt �
EA

2l

Z l

0

w2
x dx wxx þ EIwxxxx ¼ � rAgþD sinðf� yÞ

þ L cosðf� yÞ, ð1Þ

rIpytt � Ryxx ¼ �rAcðw� cyÞtt þM, (2)

where the magnitudes of the drag force, the lift force, and the moment in the ðy; zÞ-plane acting on the beam
per unit length of the beam are D, L, and M, respectively, the moment M acts in the ðy; zÞ-plane around the
x-axis, r is the mass density of the beam (including the small ice ridge), A is the constant cross-sectional area of
the beam (including the small ice ridge), f is the angle between v1 and vs (with j f jpp), g is the gravitational
acceleration, y is the angle of torsion in the ðy; zÞ-plane around the axis of the beam, E is Young’s modulus, I is
the moment of inertia of the cross-section (including the small ice ridge), Ip is the polar moment of inertia of
the cross-section (including the small ice ridge), R ¼ EId1=2ð1� nÞ is the torsional rigidity, d1 is a diameter
of the cross-section of the beam, n is Poisson’s ratio, and w is the displacement in the vertical direction, c is the
distance from the centroid of the beam to the outside of the beam. In Eq. (2) the term rAcðw� cyÞtt represents
the transverse inertial force and the term rIpytt the inertial torque [16]. The magnitudes D, L and M of the
aerodynamic forces may be given by

D ¼ 1
2
rad1cDðaÞv2s ; L ¼ 1

2
rad1cLðaÞv2s ; M ¼ 1

2
rad1cM ðaÞv2s , (3)

where ra is the density of the air, vs ¼j vs j, a is the angle between es and vs with (j a jpp), and cDðaÞ, cLðaÞ and
cMðaÞ are the quasi-steady drag-, lift- and moment-coefficients, which may be obtained from wind-tunnel
measurements. For a certain range of values of v1 some characteristic results from wind-tunnel experiments
are given in Ref. [17]. From these experimental results the drag-, lift- and moment-coefficients can be
approximated for low velocities of the beam by (see also Ref. [15]):

cDðaÞ ¼ ða� a1ÞcD; cLðaÞ ¼ cL1
ða� a1Þ þ cL3

ða� a1Þ
3,

cMðaÞ ¼ cM1
ða� a1Þ þ cM3

ða� a1Þ
3, (4)

where cD, cL1, cL3, cM1, and cM3 are constants, a1 is a critical value such that (according to the Den Hartog
criterion) galloping may set in. For galloping oscillations which are low-frequency oscillations it can be
assumed that jfj51. The right-hand side of Eqs. (1)–(2) can be expanded near wt=v1 ¼ 0 and y ¼ 0. Using
the fact that f ¼ arctanð�wt=v1Þ and neglecting terms of degree four and higher one obtains after some
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elementary calculations

rAwtt �
EA

2l

Z l

0

w2
x dx wxx þ EIwxxxx ¼ � rAgþ

1

2
rad1v21 a0 þ a1

wt

v1
þ y

� ��

þ a2y
2
þ a3

w2
t

v21
þ a4

wt

v1
yþ a5

w3
t

v31

þa6
w2

t

v21
yþ a7

wt

v1
y2 þ a8y

3

�
, ð5Þ

rIpytt � Ryxx ¼ � rAcðw� cyÞtt þ b0 þ b1
wt

v1
þ y

� �
þ b2y

2

�

þb3
w2

t

v21
þ b4

wt

v1
yþ b5

w3
t

v31
þ b6

w2
t

v21
yþ b7

wt

v1
y2 þ b8y

3

�
, ð6Þ

where

a0 ¼ ðas � a1ÞðcL1 þ cL3ððas � a1Þ
2
Þ,

a1 ¼ �ðcL1 þ 3cL3ðas � a1Þ
2
þ cDðas � a1ÞÞ,

a2 ¼ ðas � a1Þð12 cL1 þ
1
2

cL3ð6þ ðas � a1Þ
2
ÞÞ,

a3 ¼ �ðcL1ðas � a1Þ þ ðas � a1ÞcL3ððas � a1Þ
2
� 6Þ � 2cDÞ,

a4 ¼ ð�
1
2

cL1ðas � a1Þ � 1
2

cL3ðas � a1Þððas � a1Þ
2
� 6Þ þ cDÞ,

a5 ¼ �ð
1
6

cL1 þ cL3ð
1
2
ðas � a1Þ

2
þ 1Þ þ 1

2
ðas � a1ÞcDÞ,

a6 ¼ ð
1
2 cL1 þ

3
2 cL3ððas � a1Þ

2
� 6Þ � 1

2 ðas � a1ÞcDÞ,

a7 ¼
1
2
ð3cL1 þ 3cL3ð3ðas � a1Þ

2
� 2Þ þ cDðas � a1ÞÞ,

a8 ¼
1
2
ðcL1 þ cL3ð3ðas � a1Þ

2
� 2Þ þ 1

3
cDðas � a1ÞÞ,

b0 ¼ cM1ðas � a1Þ þ cM3ðas � a1Þ
3; b1 ¼ �ðcM1 þ 3cM3ðas � a1Þ

2
Þ,

b2 ¼ ðas � a1ÞðcM1 þ ðas � a1ÞcM3ð3þ as � a1ÞÞ,

b3 ¼ 6cM3ðas � a1Þ; b4 ¼ 3cM3ðas � a1Þ,

b5 ¼ �ð
2
3

cM1 þ cM3ð2ðas � a1Þ
2
þ 1ÞÞ; b8 ¼ �cM3,

b6 ¼ �ðcM1 þ 3cM3ððas � a1Þ
2
þ 1ÞÞ; b7 ¼ �3cM3. (7)

Eq. (5) will be simplified by eliminating the term �rAg by introducing the transformation w ¼ ~w� AgsðxÞ,
where sðxÞ satisfies the following time-independent boundary value problem:

sxxxx �
A3g2

2lI

Z l

0

s2x dx sxx þ
r

EI
¼ 0,

sð0Þ ¼ sðlÞ ¼ 0; sxxð0Þ ¼ sxxðlÞ ¼ 0.

The term �AgsðxÞ represents the deflection of the beam in static state due to gravity. Using the dimensionless
variables t̄ ¼ 1=l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=rAÞ

p
t, w̄ ¼ v1=l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=rAÞ

p
~w, x̄ ¼ x=l and s̄ ¼ EIk2=r, where k ¼ A3g2=2lI

R l

0
s2x dx,

and assuming that the deflection of the beam in static state due to gravity, gAsðxÞ, is small with respect to the
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vertical displacement w̄, which is of order 1, Eqs. (5)–(6) become

w̄t̄t̄ þ w̄x̄x̄x̄x̄ ¼ �ða0 þ a1w̄t̄ þ a1yþ a3w̄2
t̄ þ a4w̄t̄yþ a5w̄3

t̄

þ a6w̄
2
t̄ yþ a7w̄t̄y

2
þ a8y

3
Þ þ Oð�nÞ, ð8Þ

yt̄t̄ � b2yxx ¼ � �ðb̄0 þ b̄1w̄t̄ þ b̄1yþ b̄3w̄
2
t̄ þ b̄4w̄t̄yþ b̄5w̄

3
t̄

þ b̄6w̄
2
t̄ yþ b̄7w̄t̄y

2
þ b̄8y

3
Þ þ Oð�nÞ, ð9Þ

with n41, b̄i ¼ ðAl2v1
ffiffiffiffiffiffiffi
rA
p

=ðAc2 þ IpÞEIÞbi, b2
¼ Al2=2ð1� nÞðAc2 þ IpÞ, and � ¼ radv1l2=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIrcA

p
is a

small parameter. Assuming that the static angle of attack as is such that galloping may set in according to the
instability criterion of den Hartog [18], that is, assuming that as ¼ a1 þ Oð�Þ, the partial differential equations
describing up to Oð�nÞ, n41, the vertical and torsional displacement of an elastic beam in a uniform airflow
will be

w̄t̄t̄ þ w̄x̄x̄x̄x̄ ¼ �ða1wt̄ þ a1yþ a3w̄
2
t̄ þ a4w̄t̄yþ a5w̄3

t̄

þ a6w̄
2
t̄ yþ a7w̄t̄y

2
þ a8y

3
Þ; 0ox̄o1; t̄40, ð10Þ

yt̄t̄ � b2yx̄x̄ ¼ ��ðb̄1w̄t̄ þ b̄1yþ b̄3w̄
2
t̄ þ b̄4w̄t̄yþ b̄5w̄

3
t̄

þ b̄6w̄2
t̄ yþ b̄7w̄t̄y

2
þ b̄8y

3
Þ; 0ox̄o1; t̄40. ð11Þ

When a simply supported beam is considered which cannot rotate around the x-axis at x ¼ 0 and 1, the
following boundary conditions should be introduced

w̄ð0; t̄Þ ¼ w̄ð1; t̄Þ ¼ w̄x̄x̄ð0; t̄Þ ¼ w̄x̄x̄ð1; t̄Þ ¼ 0; t̄p0, (12)

yð0; t̄Þ ¼ yð1; t̄Þ ¼ 0; t̄p0. (13)

For convenience all bars will be dropped in the further analysis. These boundary conditions (12)–(13) imply
that the functions w and y can be extended as odd, 2-periodic functions in x, i.e. w and y can be written in
Fourier sine-series in x:

wðx; tÞ ¼
X1
n¼1

qnðtÞ sinðnpxÞ; yðx; tÞ ¼
X1
m¼1

f mðtÞ sinðmpxÞ. (14)

Since the right-hand sides of Eqs. (10)–(11) contain a small parameter � perturbation method are usually
applied to construct approximations of the functions wðx; tÞ and yðx; tÞ.

3. Boundary damping

When a perturbation is used terms that give rise to secular terms may occur in the right-hand sides of
Eqs. (10)–(11). Usually to eliminate these terms a multiple time scales perturbation method is introduced.
However, by substituting expressions (14) for w and y into system (10)–(13) and by using the perturbation
method (see also Ref. [19]), an infinite dimensional system of coupled ODEs will be obtained which would be
hard (if not impossible) to analyze because of its complexity. Since all vibration modes have to be considered due
to the existing infinitely, many internal resonances it will be unclear how a truncation method can be applied. On
the other hand only the low-frequency oscillations are important to describe the galloping oscillations of a beam
in a windfield. For that reason a more engineering approach will be used. In practice dampers are added to the
beam (or to the elastic structures such as bridges) to diminish undesirable oscillations. It will be assumed that the
oscillation amplitudes are sufficiently small, such that the nonlinear terms in Eqs. (8)–(9) are of higher order
compared to the linear terms. So, it will be assumed that the linear terms are far more important than the (small)
nonlinear terms, and this will imply that the internal resonances due to the nonlinear terms can be left out in the
analysis. Then, an analysis of the linearized problem (10)–(13) (including the dampers) is usually sufficient to
consider. For that reason system (10)–(11) will be linearized first, yielding

wtt þ wxxxx ¼ �a1ðwt þ yÞ, (15)
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ytt � b2yxx ¼ ��b1ðwt þ yÞ, (16)

and then several damping aspects for the linearized problem will be considered.
As a first simplification in the investigation of coupled torsional and vertical vibrations of an elastic beam

only the vertical oscillations of the beam are considered. In Section 4 both torsional and vertical vibrations will
be studied. First a cantilevered beam with two types of dampers attached to the free end will be considered (see
Fig. 2). The vertical oscillations of such a beam can be described by the following boundary value problem:

wtt þ wxxxx ¼ �a1wt; 0oxo1; t40, (17)

w ¼ wx ¼ 0; x ¼ 0; t40, (18)

wxx ¼ ��bwxt; x ¼ 1; t40, (19)

wxxx ¼ �awt; x ¼ 1; t40, (20)

where a and b are positive damping constants. The boundary condition (19) and (20) describe rotational and
vertical damping respectively, and can be obtained by applying Newton’s second law. For instance to obtain
boundary condition (20) it can be assumed that a small mass m is added to the right end of the beam at x ¼ 1.
Newton’s second law then implies mwttð1; tÞ ¼ wxxxð1; tÞ � �awtð1; tÞ, where wxxxð1; tÞ represents the shear force
at x ¼ 1, and �awtð1; tÞ the damping force. By letting m�!0 boundary conditions (20) will follow. Similarly,
boundary condition (19) can be obtained by studying the angular acceleration.

Two time scales are introduced t ¼ t0 and t ¼ �t, and it is assumed that wðx; tÞ can be expanded in a formal
power series in �, that is, wðx; tÞ ¼ w0ðx; t0; tÞ þ �w1ðx; t0; tÞ þ �2w2ðx; t0; tÞ þ � � � . Substituting this into the
boundary value problem (17)–(20) and collecting equal powers in �, yields the following Oð�0Þ-problem

q2w0

qt20
þ

q4w0

qx4
¼ 0,

w0 ¼
qw0

qx
¼ 0; x ¼ 0,

q2w0

qx2
¼

q3w0

qx3
¼ 0; x ¼ 1. (21)

By using the method of separation of variables solutions of the well-known problem (21) for the cantilevered
beam can readily be constructed. The following for w0 is the finally obtained

w0ðx; t0; tÞ ¼
X1
n¼1

AnðtÞ sinðl
2
nt0Þ þ BnðtÞ cosðl

2
nt0Þ

� �
fnðxÞ, (22)

where fnðxÞ ¼ sinðlnxÞ � sinhðlnxÞ þ gðcoshðlnxÞ � cosðlnxÞÞ, g ¼ sinðlnÞ þ sinhðlnÞ= cosðlnÞ þ coshðlnÞ, and
ln n ¼ 0; 1; 2; 3 . . . is the nth zero of the transcendental equation coshðlnÞ cosðlnÞ þ 1 ¼ 0.
�

�

Fig. 2. A beam clamped at one end and with lateral and torsional dampers at the other.
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Next the Oð�1Þ-problem is considered

q2w1

qt20
þ

q4w1

qx4
¼ a1

qw0

qt0
� 2

q2w0

qt0qt
,

w1 ¼
qw1

qx
¼ 0; x ¼ 0,

q2w1

qx2
¼ �b

q2w0

qxqt0
; x ¼ 1,

q3w1

qx3
¼ a

qw0

qt0
; x ¼ 1. (23)

To solve the boundary value problem (23) for w1 it is convenient to make the boundary conditions in Eq. (23)
at x ¼ 1 homogeneous by introducing the following transformation:

w1ðx; t0; tÞ ¼ u1ðx; t0; tÞ �
a
2

qw0ð1; t0; tÞ
qt0

þ
b
2

q2w0ð1; t0; tÞ
qxqt0

� �
x2

þ
a
6

qw0ð1; t0; tÞ
qt0

x3. ð24Þ

The boundary value problem (23) then becomes

q2u1

qt20
þ

q4u1

qx4
¼ a1

qw0

qt0
� 2

q2w0

qt0qt
þ

a
2

q3w0ð1; t0; tÞ
qt30

�

þ
b
2

q4w0ð1; t0; tÞ
qxqt30

�
x2 �

a
6

q3w0ð1; t0; tÞ
qt30

x3, ð25Þ

u1 ¼
qu1

qx
¼ 0; x ¼ 0;

q2u1

qx2
¼

q3u1

qx3
¼ 0; x ¼ 1. (26)

Now u1 can be written as u1 ¼
P1

n f nðt0; tÞfnðxÞ and by substituting this into Eq. (25) the following is obtained

X1
n¼1

q2f n

qt0
þ l4n f n

� �
fnðxÞ ¼

X1
n¼1

l2n a1Gnðt0; tÞ � 2
qGnðt0; tÞ

qt

� �
fnðxÞ

þ
a
2

X1
n¼1

l6nGnðt0; tÞfnð1Þðx
2 � x3Þ �

b
2

X1
n¼1

l7nGnðt0; tÞf
0
nð1Þx

2,

where Gnðt0; tÞ ¼ AnðtÞ cosðl
2
nt0Þ � BnðtÞ sinðl

2
nt0Þ. Using the orthogonality properties of the functions fnðxÞ it

then follows from the last equation that f k has to satisfy

q2f k

qt0
þ l4k f k

� �
g1 ¼ l2k a1Gkðt0Þ �

qGkðt0; tÞ
qt

� �
g1

�
X1
n¼1

a
6
l6nGnðt0; tÞfnð1Þð�3g2 þ g3Þ �

X1
n¼1

b
2
l7nGnðt0; tÞf

0
nð1Þg2, ð27Þ

where

g1 ¼
Z 1

0

f2
kðxÞdx; g2 ¼

Z 1

0

x2fkðxÞdx; g3 ¼
Z 1

0

x3fkðxÞdx.

Since cosðl2kt0Þ and sinðl2kt0Þ are part of the homogeneous solution of u1, it follows that the coefficients of
cosðl2kt0Þ and sinðl2kt0Þ in the right-hand side of Eq. (27) should be equal to zero (elimination of secular terms).
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This gives us differential equations for Ak and Bk

qAk

qt
¼ �af ðlkÞ � bgðlkÞ þ

a1

2

� �
Ak,

qBk

qt
¼ �af ðlkÞ � bgðlkÞ þ

a1

2

� �
Bk, (28)

where

f ðlkÞ ¼
lkfkð1Þ

3
ð2l3k þ 3gl2k � 6gÞ coshðlkÞ � ð2gl

3
k þ 3l2k � 6Þ sinhðlkÞ

�
þð2l3k þ 3gl2k þ 6gÞ cosðlkÞ þ ð2gl

3
k � 3l2k � 6Þ sinðlkÞ

�
=

ðg2 þ 1Þ coshðlkÞðsinhðlkÞ � 2 sinðlkÞÞ � ðg2 � 1Þ cosðlkÞ
�
�ð2 sinhðlkÞ � sinðlkÞÞ � 2gðcosh2ðlkÞ � cos2ðlkÞÞ

þ 4g sinhðlkÞ sinðlkÞ þ 2glk

�
,

gðlkÞ ¼ l2kf
0
kð1Þ ðgl

2
k þ 2lk þ 2gÞ sinhðlkÞ � ðl

2
k þ 2glk þ 2Þ sinhðlkÞ

�
�ðgl2k � 2lk � 2gÞ sinðlkÞ � ðl

2
k þ 2glk � 2Þ cosðlkÞ

�
=

ðg2 þ 1Þ coshðlkÞðsinhðlkÞ � 2 sinðlkÞÞ � ðg2 � 1Þ cosðlkÞ
�
�ð2 sinhðlkÞ � sinðlkÞÞ � 2gðcosh2ðlkÞ � cos2ðlkÞÞ

�4g sinhðlkÞ sinðlkÞ þ 2glk

�
.

In Table 1 the first ten values of the coefficients f ðlkÞ and gðlkÞ are given.
From Eq. (28) and Table 1 it can be concluded that for sufficiently large (positive) values of a and b the

beam can be damped. To be more specific to have damping, the coefficient �af ðlkÞ � bgðlkÞ þ a1=2 should be
negative. And since the function f ðlkÞ � 2:0 and the increasing function gðlkÞ49 it follows that for a given a1

when a and b are chosen such that �2a� 9bþ a1=2o0 damping will always occur.
As a next step in the investigation the vertical oscillations of a simply supported beam with two different

types of dampers attached at a distance d from the left end of the beam is considered (see Fig. 3). The vertical
oscillations of such a beam can be described by the following boundary value problem:

wi
tt þ wi

xxxx ¼ �a1wi
t; 0oxo1; t40, (29)

wI ¼ wI
xx ¼ 0; x ¼ 0; t40, (30)

wII ¼ wII
xx ¼ 0; x ¼ 1; t40, (31)
Table 1

The first ten values of the coefficients f ðlkÞ and gðlkÞ

n ln f ðlnÞ gðlnÞ

1 21.875 2.0 9.141

2 4.694 2.0 57.287

3 7.855 2.0 160.423

4 10.996 2.0 314.371

5 14.137 2.0 519.622

6 17.279 2.0 776.260

7 20.420 2.0 1084.139

8 23.562 2.0 1443.436

9 26.704 2.0 1854.069

10 29.845 2.0 2315.882
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Fig. 3. A beam simply supported at both ends, and with an intermediate lateral and torsional damper.
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wI ¼ wII; wI
x ¼ wII

x ; x ¼ d, (32)

wII
xx � wI

xx ¼ �bwxt; x ¼ d, (33)

wII
xxx � wI

xxx ¼ ��awt; x ¼ d, (34)

where a and b are positive damping parameters and i defines the section of the beam (see Fig. 3), that is, wI and
wII are the vertical displacements of the beam for 0oxod and for doxo1, respectively.

Again two time scales, t ¼ t0 and t ¼ �t are introduced, and it is assumed that wðx; tÞ can be expanded in a
formal power series in �, that is, wðx; tÞ ¼ w0ðx; t0; tÞ þ �w1ðx; t0; tÞ þ �2w2ðx; t0; tÞ þ � � � : By substituting this
expressions into the boundary value problem (29)–(34) and by collecting equal powers in � then the following
Oð�0Þ-problem is obtained

q2w0

qt20
þ

q4w0

qx4
¼ 0; 0oxo1, (35)

w0 ¼
q2w0

qx2
¼ 0; x ¼ 0; x ¼ 1, (36)

and w0, w0x, w0xx, and w0xxx are continuous at x ¼ d. By using the method of separation of variables the
solution of this well-known problem for the free oscillations of a simply supported beam can readily be
obtained, yielding

w0ðx; t0; tÞ ¼
X1
n¼1

AnðtÞ sinðn2p2t0Þ þ BnðtÞ cosðn2p2t0Þ
� �

sinðnpxÞ. (37)

Next the Oð�1Þ-problem will be considered

q2wi
1

qt20
þ

q4wi
1

qx4
¼ a1

qwi
0

qt0
� 2

q2wi
0

qt0qt
; 0oxod; i ¼ 1; doxol; i ¼ 2, (38)

wI
1 ¼

q2wI
1

qx2
¼ 0; x ¼ 0; wII

1 ¼
q2wII

1

qx2
¼ 0; x ¼ 1,

wI
1 ¼ wII

1 ;
qwI

1

qx
¼

qwII
1

qx
; x ¼ d,

q2wII
1

qx2
�

q2wI
1

qx2
¼ b

q2w2
0

qxqt0
; x ¼ d,
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q3wII
1

qx3
�

q3wI
1

qx3
¼ �a

qw2
0

qt0
; x ¼ d. (39)

To solve the boundary value problem (38)–(39) for w1 it is convenient to make the boundary conditions in
Eq. (39) at x ¼ d homogeneous by introducing the following transformations:

wI
1ðx; t0; tÞ ¼ u1ðx; t0; tÞ �

adðd2
� 3d þ 2Þ

6

qw0ðd; t0; tÞ
qt0

x

�
bð3d2

� 6d þ 2Þ

6

q2w0ðd; t0; tÞ
qxqt0

xþ
að1� dÞ

6

qw0ðd; t0; tÞ
qt0

x3

�
b
6

q2w0ðd; t0; tÞ
qxqt0

x3, ð40Þ

wII
1 ðx; t0; tÞ ¼ u1ðx; t0; tÞ þ

ad3

6

qw0ðd; t0; tÞ
qt0

þ
bd2

2

q2w0ðd; t0; tÞ
qxqt0

�
adðd2

þ 2Þ

6

qw0ðd; t0; tÞ
qt0

x�
bð3d2

þ 2Þ

6

q2w0ðd; t0; tÞ
qxqt0

x

þ
ad

2

qw0ðd; t0; tÞ
qt0

x2 þ
b
2

q2w0ðd; t0; tÞ
qxqt0

x2 �
ad

6

qw0ðd; t0; tÞ
qt0

x3

�
b
6

q2w0ðd; t0; tÞ
qxqt0

x3. ð41Þ

By substituting this transformation into Eqs. (38)–(39) and by putting u1ðx; t0; tÞ ¼
P1

n¼1 f nðt0; tÞ sinðnpxÞ, and
by using the orthogonality properties of the sine functions the following equation for f kðt0; tÞ is obtained

q2f k

qt0
þ ðkpÞ4f k

� �
=2 ¼ ðkpÞ2 a1Gkðt0Þ � 2

qGkðt0; tÞ
qt

� �
=2

�
X1
k¼1

a
6

k6p6ð�dðd2
� 3d þ 2Þḡ1 þ ð1� dÞḡ3 þ d3g0 � 3dðd2

þ 1Þg1

� 3dg2 � dg3ÞGkðt0; tÞ sinðkpdÞ þ
X1
k¼1

b
6

n7p7 ð3d2
� 6d þ 2Þḡ1

�

�ḡ3 þ 3d2g0 þ ð3d2
þ 2Þg1 þ 3g2 � g3

�
Gkðt0; tÞ cosðkpdÞ, ð42Þ

where Gkðt0; tÞ ¼ AkðtÞ cosðk
2p2t0Þ � BkðtÞ sinðk

2p2t0Þ,

ḡ1 ¼
Z d

0

x sinðkpxÞdx; ḡ3 ¼
Z d

0

x3 sinðkpxÞdx; g0 ¼
Z 1

d

sinðkpxÞdx,

g1 ¼
Z 1

d

x sinðkpxÞdx; g2 ¼
Z 1

d

x2 sinðkpxÞdx; g3 ¼
Z 1

d

x3 sinðkpxÞdx.

Since cosðl2kt0Þ and sinðl2kt0Þ are part of the homogeneous solution of u1, the coefficients of cosðl2kt0Þ and
sinðl2kt0Þ in the right-hand side of Eq. (42) should be set equal to zero (elimination of secular terms). The
following differential equations for Ak and Bk are then obtained

_Ak ¼ �a sin
2
ðkpdÞ � bk2p2 cos2ðkpdÞ þ

a1

2

� �
Ak, (43)

_Bk ¼ �a sin
2
ðkpdÞ � bk2p2 cos2ðkpdÞ þ

a1

2

� �
Bk. (44)

For sufficiently large values of the damping parameters a and b the expression between brackets in
Eqs. (43)–(44) is always negative. So, with this type of damping device the flow-induced vibrations of the beam
can be damped, that is, all oscillation modes will tend to zero.
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4. Coupled torsional and vertical vibrations

In this section the coupled torsional and vertical vibrations of a simply supported beam will be studied. The
suspension bridge in this section will be modeled by a system as given in Fig. 3. An additional torsional
damper is attached at x ¼ d such that the torsional vibrations of the beam around the beam axis are also
damped. This damping is assumed to be proportional to the torsional velocity yt. This system can be described
by the following initial-boundary value problem

wi
tt þ wi

xxxx ¼ �a1ðw
i
t þ yi

Þ,

yi
tt � b2yi

xx ¼ ��b1ðw
i
t þ yi

Þ,

wI ¼ wI
xx ¼ 0; x ¼ 0; wII ¼ wII

xx ¼ 0; x ¼ 1,

wI ¼ wII; wI
x ¼ wII

x ; x ¼ d,

wII
xx � wI

xx ¼ �bwxt; x ¼ d,

wII
xxx � wI

xxx ¼ ��awt; x ¼ d,

yi
¼ 0; x ¼ 0; x ¼ d; y1 ¼ y2; x ¼ d,

yIIx � yIx ¼ �dyt; x ¼ d, (45)

where a, b, and d are positive damping parameters, and where the last boundary conditions in Eq. (45) again
can be derived by applying Newton’s second law to an element at x ¼ d. The beam is divided (by dampers)
into two sections. The parameter i ¼ I corresponds to the section of the beam with 0oxod, and the
parameter i ¼ II corresponds to the section with doxo1. A two time scales perturbation method will be used
to solve this problem approximately. To investigate the influence of the wind-forces and the dampers a fast
time t0 and a slow time t are introduced. Also the functions w and y are expanded in power series in �, that is,
wðx; tÞ ¼ w0ðx; t0; tÞ þ �w1ðx; t0; tÞ þ � � � and yðx; tÞ ¼ y0ðx; t0; tÞ þ �y1ðx; t0; tÞ þ � � � . Then the Oð1Þ and Oð�Þ
problems are studied. The Oð1Þ-problem becomes

q2w0

qt20
þ

q4w0

qx4
¼ 0,

q2y0
qt20
� b2 q

2y0
qx2
¼ 0,

w0 ¼
q2w0

qx2
¼ 0; x ¼ 0; x ¼ 1,

y0 ¼ 0; x ¼ 0; x ¼ 1,

and w0, w0x, w0xx, w0xxx, y0, and y0x are continuous at x ¼ d. This problem is well-known and can easily be
solved, yielding

w0ðx; t0; tÞ ¼
X1
n¼1

AnðtÞ sinðn2p2t0Þ þ BnðtÞ cosðn2p2t0Þ
� �

sinðnpxÞ, (46)

y0ðx; t0; tÞ ¼
X1
m¼1

CmðtÞ sinðmpbt0Þ þDmðtÞ cosðmpbt0Þð Þ sinðmpxÞ. (47)
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The Oð�Þ-problem now becomes

q2w1

qt20
þ

q4w1

qx4
¼ a1

qw0

qt0
þ y0

� �
� 2

q2w0

qt0qt
, (48)

q2y1
qt20
� b2 q

2y1
qx2
¼ �b1

qw0

qt0
þ y0

� �
� 2

q2y0
qt0qt

, (49)

w1
1 ¼

q2w1
1

qx2
¼ 0; x ¼ 0; w2

1 ¼
q2w2

1

qx2
¼ 0; x ¼ 1, (50)

wI
1 ¼ wII

1 ;
qwI

1

qx
¼

qwII
1

qx
; x ¼ d, (51)

q2wII
1

qx2
�

q2wI
1

qx2
¼ b

q2w0

qt0qx
; x ¼ d, (52)

q3wII
1

qx3
�

q3wI
1

qx3
¼ �a

qw0

qt0
; x ¼ d, (53)

y1 ¼ 0; x ¼ 0; x ¼ 1; yI1 ¼ yII1 ; x ¼ d, (54)

qyII1
qx
�

qyI1
qx
¼ d

qy0
qt0

; x ¼ d. (55)

The boundary conditions (51)–(55) are nonhomogeneous ones. To solve the boundary value problem (48)–(55)
the following transformations are introduced to make the boundary conditions homogeneous:

wI
1 ¼ u1 þ �

adðd2
� 3d þ 2Þ

6

qw0ðt0; t; dÞ
qt0

�
bð3d2

� 6d þ 2Þ

6

q2w0ðt0; t; dÞ
qxqt0

� �
x

þ
að1� dÞ

6

qw0ðt0; t; dÞ
qt0

�
b
6

q2w0ðt0; t; dÞ
qxqt0

� �
x3,

wII
1 ¼ u1 þ

ad3

6

qw0ðdÞ

qt0
þ

bd2

2

q2w0ðdÞ

qxqt0
þ �

adðd2
þ 2Þ

6

qw0ðdÞ

qt0

�

�
bð3d2

þ 2Þ

6

q2w0ðt0; t; dÞ
qxqt0

�
xþ

ad

2

qw0ðt0; t; dÞ
qt0

þ
b
2

q2w0ðt0; t; dÞ
qxqt0

� �
x2

þ �
ad

6

qw0ðt0; t; dÞ
qt0

�
b
6

q2w0ðt0; t; dÞ
qxqt0

� �
x3,

y11 ¼ Z1 þ ðd � 1Þd
qy0ðt0; t; dÞ

qt0
x; y21 ¼ Z1 � dd

qy0ðt0; t; dÞ
qt0

þ dd
qy0ðt0; t; dÞ

qt0
x,

where u1 ¼ u1ðx; t0; tÞ and Z1 ¼ Z1ðx; t0; tÞ. By using these transformations, by substituting the expressions for
w0 and y0 into (48)–(55), by using the orthogonality properties of the sine-series, and by taking into
consideration that the functions u1ðx; t0; tÞ and Z1ðx; t0; tÞ have the following form:

u1ðx; t0; tÞ ¼
X1
n¼1

f nðt0; tÞ sinðnpxÞ,

Z1ðx; t0; tÞ ¼
X1
m¼1

gmðt0; tÞ sinðmpxÞ,
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it follows that the boundary value problem (48)–(55) can be rewritten as a problem for f nðt0; tÞ and gnðt0; tÞ

1

2

q2f k

qt20
þ k4p4f k

� �
¼ � k2p2

qAkðtÞ
qt

cosðk2p2t0Þ �
qBkðtÞ
qt

sinðk2p2t0Þ
� �

þ
a1

2
k2p2 AkðtÞ cosðk

2p2t0Þ � BkðtÞ sinðk
2p2t0Þ

� �

þ
a1

2
CkðtÞ sinðkpbt0Þ þDkðtÞ cosðkpbt0Þð Þ

�
a
6

k6p6 �AkðtÞ cosðk
2p2t0Þ þ BkðtÞ sinðk

2p2t0Þ
� �

� sinðkpdÞgk �
b
6

k7p7 �AkðtÞ cosðk
2p2t0Þ

�
þBkðtÞ sinðk

2p2t0Þ
�
cosðkpdÞsk, ð56Þ

1

2

q2gk

qt20
þ k2p2b2gk

� �
¼ � kpb

qCkðtÞ
qt

cosðkpbt0Þ �
qDkðtÞ
qt

cosðkpbt0Þ

� �

�
b1

2
k2p2 AkðtÞ cosðk

2p2t0Þ � BkðtÞ sinðk
2p2t0Þ

� �

�
b1

2
CkðtÞ sinðkpbt0Þ þDkðtÞ cosðkpbt0Þð Þ

þ dk3p3b3
�CkðtÞ cosðkpbt0Þ þDkðtÞ cosðkpbt0Þð Þfk, ð57Þ

where

gk ¼

Z d

0

ð�dðd2
� 3d þ 2Þxþ ð1� dÞx3Þ sinðkpxÞdx

þ

Z 1

d

ðd3
� dðd2

þ 2Þxþ 3dx2
� dx3

Þ sinðkpxÞdx,

sk ¼

Z d

0

ð�ð3d2
� 6d þ 2Þx� x3Þ sinðkpxÞdx

þ

Z 1

d

ð3d2
� ð3d2

þ 2Þxþ 3x2 � x3Þ sinðkpxÞdx,

fk ¼ �

Z d

0

ðd � 1Þx sinðkpxÞdxþ

Z 1

d

dð1� xÞ sinðkpxÞdx.

Now it should be observed that in the right-hand side of Eqs. (56) and (57) terms like cosðk2p2t0Þ, sinðk
2p2t0Þ,

cosðkpbt0Þ, and sinðkpbt0Þ occur. These terms are solutions of the corresponding homogeneous equations (56)
and (57). So, secular terms will occur in the solutions for f kðt0; tÞ and gkðt0; tÞ. To avoid these secular terms the
coefficients before the terms cosðk2p2t0Þ, sinðk

2p2t0Þ, cosðkpbt0Þ, and sinðkpbt0Þ have to be set equal to zero.
Now two cases have to be distinguished (a) bakp for all k and (b) b ¼ kp for a certain value of k. This first
case will be referred to as the nonresonant case and the other one will be called the resonant case.

4.1. The nonresonant case (bakp for all k)

In this case it follows from Eqs. (56)–(57) that AkðtÞ, BkðtÞ, CkðtÞ, DkðtÞ have to satisfy

_Ak ¼ � a sin2ðkpdÞ þ bk2p2 cos2ðkpdÞ �
a1

2

� �
Ak,

_Bk ¼ � a sin2ðkpdÞ þ bk2p2 cos2ðkpdÞ �
a1

2

� �
Bk,
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_Ck ¼ �db2 sin2ðkpdÞCk �
b1

2kpb
Dk,

_Dk ¼ �db2 sin2ðkpdÞDk þ
b1

2kpb
Ck, (58)

where the dot represents differentiation with respect to t. The eigenvalues of system (58) can easily be
determined, yielding

l1;2 ¼ � a sin2ðkpdÞ þ bk2p2 cos2ðkpdÞ �
a1

2

� �
; l3;4 ¼ �db2 sin2ðkpdÞ � i

b1

2kpb
. (59)

It is clear that for all sufficiently large values of the damping parameters a and b the real parts of the
eigenvalues l1 and l2 will be negative. Moreover, it follows from Eq. (59) that also the real part of l3 and l4
are negative when sinðkpdÞa0. So by choosing a, b, and d appropriately it follows that damping in the beam
system can always be obtained.

4.2. The resonant case b ¼ kp for a certain fixed k

In this case for b ¼ kp the frequency of a vertical and the torsional oscillation models will coincide. Then, it
follows from Eqs. (56)–(57) that AkðtÞ, BkðtÞ, CkðtÞ, DkðtÞ have to satisfy

_Ak ¼ � a sin2ðbdÞ þ bk2p2 cos2ðbdÞ �
a1

2

� �
Ak þ

a1

2k2p2
Dk, (60)

_Bk ¼ � a sin2ðbdÞ þ bk2p2 cos2ðbdÞ �
a1

2

� �
Bk �

a1

2k2p2
Ck, (61)

_Ck ¼ �db2 sin2ðbdÞCk �
b1

2b2
Dk �

b1kp
2b

Ak, (62)

_Dk ¼ �db2 sin2ðbdÞDk þ
b1

2b2
Ck �

b1kp
2b

Bk. (63)

The eigenvalues of system (60)–(63) are given by

l ¼ �
a

2
þ

ffiffiffiffiffi
jcj

p
cosðArgðcÞ=2þmpÞ þ i sinðArgðcÞ=2þmpÞ
� �

, (64)

for m ¼ 0; 1, where

a ¼ a sin2ðbdÞ þ bk2p2 cos2ðbdÞ �
a1

2
þ db2 sin2ðbdÞ � i

b1

2b2
,

c ¼
1

4
a sin2ðbdÞ þ bk2p2 cos2ðbdÞ �

a1

2
� db2 sin2ðbdÞ

� �2
�

b2
1

16b4

� i
b1

4b2
a sin2ðbdÞ þ bk2p2 cos2ðbdÞ � db2 sin2ðbdÞ
� �

.

In Fig. 4 the maximum values of the real parts of the eigenvalues are given (on a gray scale) for different values
of the damping parameters. The parameters a1 and b1 describing the wind velocity are taken from experiments
[17] and are in this case taken to be equal to 0.42 and 0.75, respectively. Positive values of the real part of the
eigenvalues correspond to a white coloring in Fig. 4. It can be seen that no damping in the system will occur
only for quite a small number of combinations of the parameter values a, b, and d. To construct these plots
one parameter, in this case the parameter a, and the position of dampers on the beam have been fixed. From
the plots it can be seen for which combinations of the other two parameters b and d damping will occur or not.
By taking the parameter a sufficiently large (larger than 0.01) damping will occur for all combinations of the
parameters b and d. We can always fix an other parameter, for example d. So for d ¼ 0:001 for ao0:5 and
bo0:35 damping will always occur.
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Fig. 4. Plots of the real parts of the eigenvalues for different values of the damping parameters.
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5. Conclusions

In this paper the oscillations of a suspension bridge have been modeled by coupled vertical and torsional
oscillations of a simply supported beam. This model has been described by coupled, linear partial differential
equations. Several types of dampers have been added to the beam to diminish undesirable oscillations. It has
been shown that a combination of three types of dampers (damping proportional to the lateral velocity,
damping proportional to the rotational velocity, and damping proportional to the torsional velocity)
guarantees the presence of damping in the system when the damping parameters and positions of the dampers
are chosen appropriately. The use of one or two types of dampers will not always generate damping in the
system. As, for instance, can be seen from Eq. (59) if parameter d is such that sinðkpdÞ ¼ 0 and parameter
b ¼ 0 or cosðkpdÞ ¼ 0 and parameter a ¼ 0. Because then two of the eigenvalues have a positive real part.
Since it is in all cases possible to calculate the eigenvalues explicitly, it is not so difficult to generate stability
diagrams for given parameter values a;b; d; d; b; a1 and b1.
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